Εμφάνιση αναρτήσεων με ετικέτα ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ. Εμφάνιση όλων των αναρτήσεων

Δευτέρα 8 Απριλίου 2013

0

ΘΕΜΑΤΑ ΟΕΦΕ Γ ΛΥΚΕΙΟΥ 2009 ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

                                                       ΘΕΜΑΤΑ 2009

                                                       ΑΠΑΝΤΗΣΕΙΣ

Σάββατο 6 Απριλίου 2013

0

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ 2003 ΟΕΦΕ

                                                                        ΘΕΜΑΤΑ



                                                                        ΛΥΣΕΙΣ

Κυριακή 24 Μαρτίου 2013

0

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

           ΘΕΜΑΤΑ ΑΠΟ ΟΡΟΣΗΜΟ ΚΑΙ ΕΦΗΜΕΡΙΔΑ ΒΗΜΑ-ΛΥΣΕΙΣ ΣΤΟ ΤΕΛΟΣ



ΛΥΣΕΙΣ ΕΔΩ

ΘΕΜΑΤΑ ΕΔΩ

Πέμπτη 21 Μαρτίου 2013

0

ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ-ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ


Τετάρτη 20 Φεβρουαρίου 2013

0

Υδροστατική πίεση


Όταν ένα ρευστό βρίσκεται σε ισορροπία πιέζει κάθε επιφάνεια με την οποία βρίσκεται σε επαφή. Όλα τα σώματα όταν βρίσκονται μέσα σε ένα ρευστό δέχονται πίεση. Έτσι όταν για παράδειγμα ένα σώμα είναι βυθισμένο μέσα στο νερό δέχεται πίεση την οποία ονομάζουμε υδροστατική πίεση. Η υδροστατική πίεση οφείλεται στη βαρύτητα. Αυτό σημαίνει ότι στο διάστημα που δεν υπάρχει βαρύτητα, δεν υπάρχει και υδροστατική πίεση.

Πειραματικά αποδεικνύεται ότι η υδροστατική πίεση που δέχεται μια επιφάνεια που είναι βυθισμένη σε κάποιο βάθος μέσα σε ένα υγρό δεν εξαρτάται από τον προσανατολισμό της επιφάνειας και άρα η υδροστατική πίεση είναι μονόμετρο μέγεθος. Δηλαδή όπως και να περιστρέψουμε την επιφάνεια, στο συγκεκριμένο βάθος η πίεση δεν αλλάζει. Η υδροστατική πίεση γίνεται ολοένα και μεγαλύτερη καθώς μεγαλώνει το βάθος στο οποίο βρίσκεται το σώμα, για το λόγο αυτό πονάνε τα αυτιά μας όσο προσπαθούμε να βουτήξουμε σε μεγαλύτερο βάθος. Πειραματικά επίσης διαπιστώνουμε ότι αν βυθίσουμε το ίδιο σώμα, στο ίδιο βάθος αλλά σε διαφορετικό υγρό η τιμή της υδροστατικής πίεσης αλλάζει και εξαρτάται από την πυκνότητα του ρευστού στο οποίο έχουμε βυθίσει το σώμα.

Νόμος της υδροστατικής πίεσης

Η υδροστατική πίεση υπόλογίζεται από τη σχέση:

           Pυδρ=d*g*h

Προκύπτει λοιπόν ότι η υδροστατική πίεση είναι ανάλογη:

1.    του βάθους από την επιφάνεια του υγρού h

2.    της πυκνότητας του υγρού d

3.     της επιτάχυνσης της βαρύτητας g

Την υδροστατική πίεση τη μετράμε με όργανα τα οποία ονομάζονται μανόμετρα.

Η υδροστατική πίεση δεν εξαρτάται από το σχήμα του δοχείου ή από τον όγκο του υγρού.

Αισθανόμαστε την ίδια πίεση είτε κάνουμε μια βουτιά και το κεφάλι μας βυθιστεί κατά ένα μέτρο σε μια μικρή πισίνα με θαλασσινό νερό, είτε στη μέση  του πελάγους στο ίδιο βάθος.
                           
0

Αρχή Pascal, Μετάδοση Πίεσης σε ρευστά

                            
     
0

Ολική ανάκλαση και κρίσιμη γωνία


Ολική ανάκλαση.
Το φαινόμενο της διάθλασης παρατηρείται είτε το φως μεταβαίνει από οπτικά αραιότερο σε οπτικά πυκνότερο μέσο είτε αντίστροφα. Ενδιαφέρον παρουσιάζει η περίπτωση στην οποία το φως πηγαίνει από οπτικά πυκνότερο σε αραιότερο μέσο.
Στην περίπτωση αυτή η γωνία διάθλασης είναι μεγαλύτερη από τη γωνία πρόσπτωσης, οπότε όσο αυξάνεται η γωνία πρόσπτωσης θα αυξάνεται η γωνία διάθλασης. Για κάποια τιμή όμως της γωνίας πρόσπτωσης η γωνία διάθλασης (δ) γίνεται δ=90ο, δηλαδή η ακτίνα κινείται ανάμεσα στα δύο οπτικά μέσα.
Τότε η γωνία πρόσπτωσης (π) θα ονομάζεται οριακή γωνία διάθλασης.

Αν η γωνία πρόσπτωσης πάρει τιμές μεγαλύτερες από την ορική γωνία διάθλασης, τότε το φως δεν εξέρχεται ποτέ από το πυκνότερο μέσο αλλά ανακλάται συνεχώς στο εσωτερικό του. Το φαινόμενο αυτό ονομάζεται ολική ανάκλαση.


                                                                 
                                
0

Φτιάξε μια μπαταρία από λεμόνι

                                                  
0

Ηλεκτρική θωράκιση-Κλωβός Faraday

το εσωτερικό των μεταλλικών αγωγών είναι θωρακισμένο από ηλεκτρικά πεδία και για το λόγο αυτό είμαστε ασφαλείς από τους κεραυνούς όταν βρισκόμαστε στο εσωτερικό ενός αυτοκινήτου                                              
                          
0

Φτιάξε το δικό σου ηλεκτροσκόπιο

                            
0

Ηλεκτροστατική

                                           
0

Το περίφημο πείραμα με τα ημισφαίρια του Μαγδεμβούργου

       

                              
0

Η δύναμη της ατμοσφαιρικής πίεσης

                                  
0

Ελεύθερη Πτώση και Οριζόντια Βολή

                                          
0

Ελεύθερη πτώση. Το πείραμα του Γαλιλαίου στη Σελήνη

Ο Dave Scott στη αποστολή Apollo 15 ρίχνει ένα σφυρί και ένα φτερό στην επιφάνεια της Σελήνης με στόχο να επιβεβαιώσει το νόμο της ελεύθερης πτώσης.
                              

Τρίτη 22 Ιανουαρίου 2013

0

Η εφαρμογή του Πυθαγορείου θεωρήματος με νερό

Μια έξυπνη κατασκευή που αποδεικνύει με νερό το Πυθαγόρειο θεώρημα (Το τετράγωνο της υποτείνουσας ενός ορθογώνιου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών).

Δευτέρα 7 Ιανουαρίου 2013

0

Δυνάμεις αδρανείας, φυγόκεντρη δύναμη και δύναμη Coriolis


Φανταστείτε ένα λεωφορείο που κινείται με σταθερή ταχύτητα. Ο οδηγός του λεωφορείου βλέπει ότι το φανάρι άναψε κόκκινο και πατάει απότομα φρένο. Τότε όλοι οι επιβάτες – ενώ μέχρι τότε ήταν ακίνητοι σε σχέση με το λεωφορείο – αισθάνονται μια μυστηριώδη «δύναμη» να τους ωθεί προς τα μπρος.
Ένας παρατηρητής που βρίσκεται ακίνητος στο πεζοδρόμιο και παρατηρεί το λεωφορείο με τους επιβάτες εξηγεί εύκολα το φαινόμενο, χωρίς να χρειάζεται την «μυστηριώδη» δύναμη. Το λεωφορείο μειώνει απότομα την ταχύτητά του, ενώ οι επιβάτες του σύμφωνα με τον νόμο της αδράνειας τείνουν να διατηρήσουν την σταθερή ταχύτητα που είχαν μαζί με το λεωφορείο – και για τον λόγο αυτό κινούνται προς τα μπρος.


Όμως ο παρατηρητής μέσα στο λεωφορείο δεν αντιλαμβάνεται τη σταθερή ταχύτητα του λεωφορείου, παρά μόνο αν κοιτάξει έξω από το παράθυρο. Για να ερμηνεύσει την κίνηση των επιβατών κατά τη διάρκεια του φρεναρίσματος, πρέπει να υποθέσει την ύπαρξη μιας δύναμης που προσδίδει επιτάχυνση προς τα μπρος, σε όλους τους επιβάτες του λεωφορείου, ίση κατά μέτρο με την επιβράδυνση που έχει το λεωφορείο. Η υποθετική αυτή δύναμη ονομάζεται συνήθως δύναμη αδρανείας.
Παρόμοιο φαινόμενο συμβαίνει όταν το λεωφορείο επιταχύνεται, οπότε οι επιβάτες αισθάνονται μια δύναμη να τους σπρώχνει προς τα πίσω.
Αυτό το απλό φαινόμενο έδωσε το έναυσμα στον Albert Einstein για να διατυπώσει την Γενική Θεωρία της Σχετικότητας. Ο Einstein θεώρησε ως αξίωμα την ισοδυναμία επιταχυνόμενου συστήματος αναφοράς με ένα ομογενές βαρυτικό πεδίο. Με απλά λόγια, δεν μπορούμε να διαπιστώσουμε με κάποιο πείραμα – μέσα στο δωμάτιό μας – αν αυτή τη στιγμή βρισκόμαστε στην επιφάνεια του πλανήτη Γη, όπου η επιτάχυνση της βαρύτητας είναι 10 μέτρα ανά δευτερόλεπτο στο τετράγωνο ή μέσα σε ένα γιγάντιο διαστημόπλοιο που κινείται ευθύγραμμα, με σταθερή επιτάχυνση 10 μέτρα ανά δευτερόλεπτο στο τετράγωνο. Αλλά δεν είναι το θέμα μας η Σχετικότητα…

Για να εφαρμόσουμε τους νόμους της κλασικής μηχανικής σε σύστημα αναφοράς που κινείται ευθύγραμμα με σταθερή επιτάχυνση α , πρέπει να δεχθούμε ότι σε κάθε μάζα m του συστήματος επιδρά μια δύναμη:
F =  - m α
που ονομάζεται δύναμη αδράνειας.
To ίδιο είμαστε αναγκασμένοι να πράξουμε και όταν το σύστημα αναφοράς περιστρέφεται. Στην περίπτωση αυτή διακρίνουμε δυο δυνάμεις αδρανείας, την φυγόκεντρη δύναμη και τη δύναμη Coriolis….Φανταστείτε κάποιον (έναν αθλητή σφυροβολίας…) που έχοντας μια σφαίρα δεμένη με σχοινί στα χέρια του, να περιστρέφεται με σταθερή γωνιακή ταχύτητα, έτσι ώστε και η σφαίρα να εκτελεί ομαλή κυκλική κίνηση.
Ένας θεατής θεωρεί ότι η συνισταμένη των δυνάμεων που ασκούνται στη σφαίρα παίζει τον ρόλο της κεντρομόλου δύναμης, εξαιτίας της οποίας η σφαίρα αποκτά την κεντρομόλο επιτάχυνση εκτελώντας ομαλή κυκλική κίνηση. Η κεντρομόλος δύναμη έχει φορά προς το κέντρο περιστροφής.
Ο στρεφόμενος όμως αθλητής μαζί με τη σφαίρα, βλέπει τη σφαίρα ακίνητη (και τον υπόλοιπο κόσμο να γυρίζει!). Για να εξηγήσει την ακινησία της σφαίρας παρότι σ’ αυτή ασκείται η κεντρομόλος δύναμη, δέχεται την ύπαρξη μιας αδρανειακής δύναμης, της φυγόκεντρης δύναμης.


Η φυγόκεντρη δύναμη πρέπει να είναι δύναμη αντίθετη της κεντρομόλου (ίδιο μέτρο και αντίθετης φοράς). Την ύπαρξη αυτής της  ανύπαρκτης δύναμης πρέπει να υποθέσει ο περιστρεφόμενος παρατηρητής ώστε να εφαρμόσει τους νόμους της μηχανικής.
Στα σώματα που κινούνται σε σχέση με περιστρεφόμενα συστήματα αναφοράς, εκτός της φυγοκέντρου δύναμης, εμφανίζεται και η δύναμη Coriolis. Για τη μελέτη του φαινομένου εκτελούμε το παρακάτω πείραμα. Στο κέντρο ενός περιστρεφόμενου οριζόντιου τραπεζιού είναι στερεωμένο ένα πιστόλι το οποίο πυροβολεί έτσι ώστε το βλήμα να εκτοξεύεται σε οριζόντια διεύθυνση.

Παρατηρούμε ότι το βλήμα δεν φθάνει στο σημείο Α – στο σημείο που θα έφθανε αν το τραπέζι δεν περιστρεφόταν – αλλά σε ένα σημείο δεξιότερα.
Ένας εξωτερικός παρατηρητής βλέπει το βλήμα να κινείται ευθύγραμμα και ομαλά γιατί δεν ασκείται σ’ αυτό καμία δύναμη (θεωρούμε την επιδραση της βαρύτητας αμελητέα). Το βλήμα δεν φθάνει στο σημείο Α εξαιτίας της περιστροφής του τραπεζιού.
Όμως για έναν παρατηρητή που περιστρέφεται μαζί με το τραπέζι το βλήμα διαγράφει καμπύλη τροχιά, οπότε πρέπει να υποθέσει ότι ασκείται σ’ αυτό μια δύναμη κάθετη στην ταχύτητά του. Η δύναμη αυτή ονομάζεται δύναμη Coriolis.
Στη δύναμη Coriolis οφείλονται μετεωρολογικά φαινόμενα, όπως ο σχηματισμός κυκλώνων. Επίσης στο φαινόμενο Coriolis βασίστηκε και ο Foucault για να αποδείξει την περιστροφή της γης γύρω από τον άξονά της, χρησιμοποιώντας το εκκρεμές του.
Τα βίντεο που ακολουθούν διαφωτίζουν κάπως τα παραπάνω.


                                                                         
               




http://physicsgg.me

Δευτέρα 26 Νοεμβρίου 2012

0

ΠΕΡΙΣΤΡΟΦΗ-ΘΕΜΑ 4 ΠΑΝΕΛΛΗΝΙΩΝ 2004

0

ΚΥΜΑΤΑ-ΘΕΜΑ 3 ΠΑΝΕΛΛΗΝΙΩΝ 2004

0

ΠΕΡΙΣΤΡΟΦΗ-ΘΕΜΑ 4 ΠΑΝΕΛΛΗΝΙΩΝ 2006