Δευτέρα 15 Οκτωβρίου 2012

0

ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ


Κυκλική κίνηση ονομάζεται η κίνηση στην οποία η τροχιά ενός κινητού ταυτίζεται με την περιφέρεια ενός κύκλου. Η πιο απλή από τις κυκλικές κινήσεις είναι η ομαλή, κατά την οποία το μέτρο της ταχύτητας του κινητού παραμένει σταθερή.
Η ομαλή κυκλική κίνηση είναι κίνηση υλικού σημείου,είναι δηλαδή ένα φαινόμενο κατά το οποίο η θέση ενός υλικού σημείου μεταβάλλεται συνεχώς
 Η ομαλή κυκλική κίνηση είναι κυκλική,είναι δηλαδή μια κίνηση  κατά την οποία
η τροχιά του υλικού σημείου είναι ένας κύκλος
 H ομαλή κυκλική κίνηση εκτός από κυκλική κίνηση είναι και ομαλή,
είναι δηλαδή μια κίνηση κατά την οποία η ταχύτητα του υλικού σημείου
δεν αυξάνεται ούτε ελαττώνεται .
 Η ομαλή κυκλική κίνηση είναι περιοδικό φαινόμενο.Είναι μια περιοδική κίνηση,  δηλαδή μια κίνηση κατά την οποία ανά ίσα χρονικά διαστήματα  το υλικό σημείο
ανακτά τη θέση του, την ταχύτητά του και την επιτάχυνσή του.
ΠΕΡΙΟΔΟΣ- ΣΥΧΝΟΤΗΤΑ
Εφόσον το φαινόμενο είναι περιοδικό, κάθε ομαλή κυκλική κίνηση  χαρακτηρίζεται από μία  περίοδο  που συμβολίζεται με Τ  και από μία συχνότητα που συμβολίζεται με το γράμμα f.
Η περίοδος του κινουμένου υλικού σημείου είναι το « σε πόσα δευτερόλεπτα κάνει μια ολόκληρη περιστροφή»


Η συχνότητα είναι το αντίστροφο. Είναι δηλαδή το «πόσες περιστροφές κάνει σε  ένα δευτερόλεπτο»



ΠΙΟ ΣΥΓΚΕΚΡΙΜΕΝΑ
Θέση
Αν επιλεγεί ένα καρτεσιανό σύστημα αναφοράς με κέντρο το κέντρο του κύκλου στην αρχή των αξόνων έτσι ώστε το επίπεδο x-y να ταυτίζεται με το επίπεδο του κύκλου, τότε οι συντεταγμένες (x,y,z) της θέσης του σώματος κάθε χρονική στιγμή περιγράφονται από τις εξισώσεις
R ακτίνα κύκλου κ θ γωνιακή μετατόπιση.Οι συντεταγμένες (χ,ψ) στο επίπεδο τροχιάς δίνονται απο την εξίσωση


Γωνιακή μετατόπιση 
Στη γενική περίπτωση της κυκλικής κίνησης, η ακτίνα θέσης του κινητού είναι σταθερή και ίση (κατά μέτρο) με την ακτίνα της τροχιάς. Η θέση του σώματος προσδιορίζεται πλήρως από μια γωνία και μία ακτίνα αναφοράς. Το σώμα βρίσκεται στη θέση που υποβάλλει η ακτίνα αναφοράς μία δεδομένη στιγμή t=0. Η γωνία αυτή ονομάζεται γωνιακή μετατόπιση. Σε πολικές συντεταγμένες, η γωνιακή μετατόπιση συμβολίζεται με το πεζό ελληνικό γράμμα θ και η φορά της προσδιορίζεται από τον κανόνα του δεξιού χεριού.

Εφαπτομενική ταχύτητα
Αν ένα σώμα εκτελεί κυκλική κίνηση, η ταχύτητά του είναι εφαπτόμενη στην τροχιά, δηλαδή τον κύκλο. Η εφαπτομενική ταχύτητα, v, ενός κινητού που εκτελεί κυκλική κίνηση ισούται κατά μέτρο με το μήκος τόξου που διαγράφει η τροχιά του σώματος σε ένα δεδομένο χρονικό διάστημα προς το ίδιο χρονικό διάστημα και έχει φορά εφαπτομενική προς την περιφέρεια του κύκλου που διαγράφει κατά την κίνησή του. Μονάδα μέτρησης της εφαπτομενικής ταχύτητας στο S.I. είναι το 1m/s.
Αν τοποθετήσουμε την αρχή των αξόνων στο κέντρο του κύκλου, τότε η ταχύτητα δίνεται διανυσματικά από την εξίσωση:
Γωνιακή ταχύτητα 
Η γωνιακή ταχύτητα, ω, ενός κινητού που εκτελεί κυκλική κίνηση ορίζεται ως ο ρυθμός με τον οποίο η ακτίνα θέσης του κινητού σαρώνει γωνιακές αποστάσεις. Η γωνιακή ταχύτητα περιγράφεται πολλές φορές με ένα διάνυσμα με διεύθυνση κάθετη στο επίπεδο του κύκλου και φορά που προσδιορίζεται από τον κανόνα του δεξιού χεριού. Επίσημη μονάδα μέτρησης της γωνιακής ταχύτητας είναι το 1s-1 αν και συνηθίζεται  να χρησιμοποιείται το 1rad/s
Επιτάχυνση 
Η επιτάχυνση είναι μία διανυσματική ποσότητα που ανήκει στο επίπεδο της τροχιάς, ώστε εν γένει να αναλύεται δύο συνιστώσες — μία ακτινική και μία εφαπτομενική στην τροχιά.Αν και η ακριβής διανυσματική μορφή που έχει η επιτάχυνση εξαρτάται από το αν η κίνηση είναι ομαλή (σταθερή γωνιακή ταχύτητα) ή ομαλά επιταχυνόμενη (χρονικά μεταβαλλόμενη γωνιακή ταχύτητα), το γεγονός ότι το διάνυσμα της ταχύτητας του κινητού που εκτελεί κυκλική κίνηση αλλάζει φορά κατά την πάροδο του χρόνου σημαίνει ότι πρέπει να υπάρχει κάποια επιτάχυνση.
Μονάδα μέτρησης της επιτάχυνσης στο S.I. είναι το 1m/s2.
Η επιτάχυνση ισούται με:


Η ακτινική συνιστώσα ονομάζεται κεντρομόλος επιτάχυνση aκ και η εφαπτομενική επιτρόχια επιτάχυνση aε . Οι δύο συνιστώσες είναι κάθετες. Το μέτρο των δύο συνιστωσών είναι :


όπου α η γωνιακή επιτάχυνση, η οποία ισούται με το ρυθμό μεταβολής της γωνιακής ταχύτητας (α=dω/dt).
Η παραπάνω σχέση αποδεικνύει (βάσει του 2ου νόμου του Νεύτωνα F=ma) ότι για να διατηρηθεί μία κυκλική κίνηση είναι απαραίτητο η συνολική δύναμη που ασκείται στο σώμα να έχει μία συγκεκριμένη κεντρομόλο συνιστώσα, η οποία ονομάζεται κεντρομόλος δύναμη.
Αν η επιτρόχια επιτάχυνση είναι μηδέν, τότε το μέτρο της ταχύτητας δεν αλλάζει και η κίνηση είναι ομαλή κυκλική κίνηση.
Σχέση γωνιακών κ γραμμικών μεγεθών 
θ η γωνιακή μετατόπιση,ς το μήκος τόξου,ν η ταχύτητα,ω η γωνιακή ταχύτητα,αε η επιτρόχια  επιτάχυνση
Στροφορμή L



όπου m η μάζα του σώματος και r το διάνυσμα θέσης του.Η στροφορμή έχει λοιπόν διεύθυνση κάθετη στο επίπεδο της τροχιάς και φορά που εξαρτάται από το πρόσημο της γωνιακής ταχύτητας του κινητού — θετική αν η κίνηση γίνεται δεξιόστροφα (ω>0) και αρνητική αν η κίνηση γίνεται αριστερόστροφα (ω<0). Ο όρος «θετική» ή «αριστερή» φορά ορίζεται με βάση τον άξονα z, ο οποίος σύμφωνα με την καθιερωμένη σύμβαση θεωρείται κάθετος στο επίπεδο της τροχιάς

Δυνάμεις στην κυκλική κίνηση

Για έναν αδρανειακό παρατηρητή που βρίσκεται στο κέντρο της τροχιάς ενός σώματος που εκτελεί ομαλή κυκλική κίνηση, η μοναδική δύναμη που δέχεται το σώμα αυτό είναι η κεντρομόλος δύναμη. Η κεντρομόλος δύναμη είναι αυτή που καθορίζει την κυκλική τροχιά του σώματος. Σε πραγματικά φυσικά προβλήματα, η κεντρομόλος δύναμη μπορεί να είναι είτε δύναμη εξ' επαφής (π.χ. η τάση ενός νήματος στην άκρη του οποίου είναι δεμένο ένα αντικείμενο το οποίο περιστρέφουμε με σταθερή ταχύτητα), είτε εξ' αποστάσεως (π.χ. η δύναμη της βαρύτητας που ασκεί ένας πλανήτης σε έναν δορυφόρο του που εκτελεί ομαλή κυκλική κίνηση).
Αν κανείς επιχειρήσει να αναγκάσει ένα σώμα (π.χ. ένα μπαλάκι του τένις δεμένο στην άκρη ενός νήματος) να εκτελέσει κυκλική κίνηση θα ανακαλύψει ότι όσο ταχύτερα εκείνος το περιστρέφει, τόσο αυξάνεται η αντίσταση που προβάλλει το σώμα αυτό (στο συγκεκριμένο παράδειγμα που αναφέρθηκε προηγουμένως η τάση του νήματος στο οποίο είναι δεμένο το μπαλάκι του τένις). Αυτό οφείλεται στο ότι το περιστρεφόμενο σώμα αντιστέκεται στην επίδραση της κεντρομόλου δύναμης λόγω της αδράνειάς του.
Από την άποψη του συστήματος αναφοράς που περιστρέφεται μαζί με το κινούμενο σώμα τα πράγματα αλλάζουν διότι το σύστημα αυτό δεν είναι αδρανειακό, συνεπώς δεν μπορούν να εφαρμοσθούν οι νόμοι του Νεύτωνα. Για να εφαρμόσει κανείς τον 2ο νόμο του Νεύτωνα σε ένα μη αδρανειακό σύστημα αναφοράς, πρέπει να συμπεριλάβει ψευδοδυνάμεις οι οποίες αναφέρονται πάντα σε σχέση με κάποιο αντίστοιχο αδρανειακό σύστημα αναφοράς.
 Εν προκειμένω, αν θέλει κανείς να μελετήσει το πρόβλημα της ομαλής κυκλικής κίνησης από τη σκοπιά του συστήματος αναφοράς που περιστρέφεται μαζί με το κινούμενο σώμα, πρέπει κατά την εφαρμογή του 2ου νόμου του Νεύτωνα να συμπεριλάβει την φυγόκεντρο δύναμη. Η φυγόκεντρος δύναμη, Fφ, σε πολικές συντεταγμένες με αρχή των αξόνων που ταυτίζεται με το κέντρο της κυκλικής τροχιάς δίνεται διανυσματικά από την εξίσωση:


όπου Fκ η κεντρομόλος δύναμη. Σύμφωνα με τον περιστρεφόμενο παρατηρητή ο ίδιος βρίσκεται σε ακινησία, συνεπώς το σύνολο των δυνάμεων που ασκούνται πάνω του πρέπει να είναι ίσο με μηδέν. Άρα στο παράδειγμα της περιστρεφόμενης μπάλας του τένις, ένας παρατηρητής που κινείται σε κυκλική τροχιά μαζί με τη μπάλα θεωρεί ότι βρίσκεται ακίνητος διότι η τάση του νήματος εξισορροπεί τη φυγόκεντρο δύναμη.

Ακολουθεί βιντεάκι..



0 σχόλια:

Δημοσίευση σχολίου